

THE NEXT GENERATION SPACE TELESCOPE

"Visiting a Time When Galaxies Were Young" -from HST and Beyond, AURA

Technology Development Overview NGST Quarterly

Daniel R. Coulter
Project Technologist & Technology Development IPT Lead
October 9, 1997

Technology Development IPT Goals & Objectives

Goals

- To provide the NGST project with access to an adequate technology base to enable-
 - (1) development of an exciting, viable mission concept within the programmatic limits established for science return, cost, schedule and risk
 - (2) design, manufacture, launch and operation of a successful mission in a timely and cost effective manner

Objectives

- Identify and prioritize NGST mission technology needs
- Plan, implement and manage technology development and validation for NGST within the available resources
- Aggressively promote development and implementation of high payoff technologies contributing to the success of NGST and enabling large space optical systems for future NASA missions

NGST Key Technologies

Low Vibration
Long Life Cryogenic
Coolers

Large, Lightweight Cryogenic Optics

Deployable Structures

Wavefront
Sensing & Control

Low Noise Large Format IR Detectors

Passive Cooling

Autonomous Operations

Integrated
Optical/Mechanical/
Thermal/Control
Modeling

Vibration Control & Fine guidance/pointing

Some Key Technology Goals

NGST

- Lightweight Cryogenic Primary Mirrors- 15kg/m², DL @2µm, 2m diameter
- Cryogenic Actuators- T 60K, Res 20nm, Stroke = 0.5-10mm, mass 100gm, power diss 5mwatts, zero hold power
- Cryogenic Deformable Mirror- T 60K, Res 5nm, Stroke 1µm, actuator spacing 1mm, # of actuators 1000
- Wavefront Sensing/Control & Fine Guidance/Pointing Methodology-image based wavefront sensors, co-alignment/co-phasing algorithms, jitter controlfast steering mirrors
- Precision Deployable Structures- primary mirror, secondary mirror, spacecraft isolation truss; accuracy=25µm-1mm, stability=TBD
- Vibration Control Methodology- passive damping, active isolation ,0.1-3Hz
- Large Format, Low Noise IR Arrays- 4kx4k (NIR), 1kx1k(FIR), dark current= 0.02-1e/sec, read noise 15e/sec
- Vibrationless, Long Life Cryocoolers- T=30K and 7K, cooling power=mwatts
- Lightweight Sunshade- deployable or inflatable, 10mx30m, enable telescope to cool to T<60K, low volume, mass 100kg, space durable
- Autonomous Operations Methodology- Adaptive Scheduler, flight software tools, Expert Assistant (proposal preperation, observation planning)

NGST Technology Development Activities

NGST

- Lightweight Cryogenic Primary Mirrors- Optics RFOs (MSFC)
- Cryogenic Actuators- Actuator RFO (LaRC, JPL- test facility)
- Cryogenic Deformable Mirror- Actuator and DM RFOs (LaRC, MSFC)
- Wavefront Sensing/Control & Fine Guidance/Pointing Methodology- DCATT Testbed (GSFC, JPL, MSFC) & Architecture Contractors
- Precision Deployable Structures- Architecture Contractors
- Vibration Control Methodology- Space Interferometry Mission & Architecture Contractors
- Large Format, Low Noise IR Arrays- IR Detector NRA (ARC)
- Vibrationless, Long Life Cryocoolers- NASA Technology Program (GSFC, JPL)
- Lightweight Sunshade- NASA Technology Program (JPL, GSFC)
 & Architecture Contractors
- Autonomous Operations Methodology- GSFC Program

Technology Development Schedule

NGST

- Award Lightweight Mirror System Demonstrator Contracts (MSFC)(accomplished)
- Complete detailed NGST FY'98 Technology Development Plan & Budget (All)(accomplished)
- Complete and publish final NGST Technology Implementation Plan and Brief Pete Ulrich and Rick Howard (JPL/All)(not accomplished)
- Complete and release Cryogenic Actuator RFO (LaRC/GSFC)(partially accomplished)
- Prepare and release IR Detector RFO (ARC) (change of plans)
- Complete Development of NGST Flight Experiment Strategy and brief to HQ and Architecture Study Award winners (GSFC)(partially accomplished)
- Brief HQ on NGST inflatable sunshade technology development plans in support of Pathfinder 1 flight in mid-'00 and initiate effort (JPL/GSFC) (accomplished)
- 1st NGST Technology Challenge Review (All)(accomplished)
 - Prepare and implement proposal process for Technology Challenge Feasibility Grants (partially accomplished)

- NGST Mirror System Demonstrator PDRs (MSFC)
- **Exercise Architecture Study Option 2 Technology Development Efforts (GSFC)**
- Complete and publish final NGST Technology Implementation Plan and Brief Pete Ulrich and Rick Howard (JPL/All)
- Release Cryogenic Actuator RFO, select winners and initiate work (LaRC)
- Prepare and release Be mirror RFO, select winners and initiate work (MSFC)
- Review and recommend Phase 2 SBIRs for funding (MSFC/All)
- **Execute formal GSFC/JPL agreement on ISIS (GSFC,JPL)**
- DCATT CDRs (GSFC,JPL,MSFC)
- Technical exchange meetings with European optics suppliers (GSFC,MSFC,JPL)